A Primer on Chemical Recycling
Mechanical techniques have been used to recycle plastics so far. An overview of the non-mechanical recycling technologies currently being developed in the emerging "chemical recycling" industry is specified below.
Plastics that are difficult or expensive to recycle mechanically can now be recycled, thanks to a variety of developing technologies in the waste management sector.
Chemical recycling methods can significantly increase recycling rates and prevent plastic waste from being disposed of in landfills or burned repeatedly by converting it back into basic chemicals and chemical feedstocks.
By allowing for the continued extraction of value from polymers that have reached the limits of their economic viability for mechanical processing, chemical recycling technologies accompany mechanical recycling processes. Previously difficult-to-recycle plastic items including films, multi-layered plastics, and laminated plastics can now be recycled chemically as an alternative to landfilling and burning. Chemical recycling also provides the supply chain for plastics with virgin-quality raw ingredients. This makes it possible to create food-grade polymers from post-consumer trash.
Mass Balance Approach
Inputs, outputs, and related information are transferred, tracked, and regulated as they pass through each stage of the relevant supply chain using the chain of custody concept known as mass balance.
To assess specific product features and guarantee the validity and transparency of related product claims, a chain-of-custody model must be chosen, with the following two options:
Renewable origin, recycled materials, etc.
Mass balance is a model where materials or goods having a set of specified qualities are mixed with materials or products without that set of characteristics by established criteria.
Chemical Recycling of Plastics
Chemical recycling refers to a variety of procedures and methods. Based on where the technologies' output is located in the supply chain for plastics, they can be divided into three different categories:
The Advantages of Chemical Recycling, Especially Pyrolysis
Recycles plastic trash; which has traditionally been difficult to recycle, has a similar quality to virgin feedstock in terms of the plastics it produces, reduces reliance on fossil fuels, and minimizes CO2 emissions.
From Discarded Plastic to Items Of The Highest Quality
The usage of plastics has been shown to provide advantages, such as preventing food loss in packaging applications, making automobiles lighter, and insulating buildings. However, the problem of plastic trash has spread throughout the world. Approximately 250 million metric tonnes of plastic garbage are produced annually throughout the world. The fact that only about 20 percent of this plastic is recycled keeps the substance in use. Consequently, more plastic garbage should be recycled as a whole. Innovation and collaborative efforts across the value chain are necessary to address this issue and create a more circular economy for plastics. By creating cutting-edge goods and technology that encourage plastic recycling, BASF will help with this.
The ChemCycling Project of BASF
The ChemCycling project is primarily concerned with plastic trash that cannot be mechanically recycled due to technological, financial, or environmental constraints. Examples include plastics with residues, mixed plastic waste fractions, which include various plastic types and won't be further sorted, and used tires that won't be recycled in any other way. The combined use of mechanical and chemical recycling can boost total recycling rates and advance the circular economy of plastics.
Zest of The ChemCyclingTM project
Complementary: Plastic waste streams that cannot be recycled mechanically due to technological, financial, or environmental constraints can be processed by chemical recycling. For instance, whereas sorted single-stream plastic waste should be recycled mechanically, mixed post-consumer plastic waste streams, such as PE, PP, and PS, can be recycled chemically because additional sorting is not cost-effective.
Dedicated to finding solutions: The recycling landscape now includes chemical recycling, which is significant. It is not always possible to redesign plastic objects so that they are mechanically recyclable, for instance, doing so would reduce performance or increase material usage.
Outputs of virgin quality: Through chemical recycling, plastic waste streams can be transformed back into feedstock for the chemical industry and distributed to goods produced in BASF's integrated chemical production network (Verbund) using a mass balance method. These goods are made from the same materials used to make fossil fuels, and they have the same characteristics.
Utilization simplicity: Our customers can use these items in applications requiring a high standard of performance, quality, and hygiene in the same manner as products made conventionally. Examples of this might be vehicle parts that are important for safety or medical uses or food packaging. This assists in meeting higher recycled content goals for goods that have to adhere to the highest quality requirements.
Transparent certification: Independent auditors certify both the mass balance process, which determines the amount of recycled feedstock to be allotted to the product and the goods themselves.
By employing recycled feedstock, we can conserve fossil resources and reduce emissions. Additionally, mass balance-based products created from chemically recycled feedstock emit fewer greenhouse gases than conventional products made from primary fossil resources. This is so that new chemical products can be made using the waste plastic instead of incinerating it.
Commercial Models
The chemical recycling industry is seeing several startups at varying phases of development. To showcase the technique, several pilot plants are running throughout Europe, while others are growing to an industrial scale.
Commercial facilities will come in a variety of sizes, including big, centralized plants with annual throughput capacities of 30 to 200 kt, small, modular distributed units with capacities of 3 to 10 kt, and mobile units with yearly capacities of up to 3 t.
Companies that operate larger, more centrally located plants frequently provide recycling as a service. In this case, the factory would take care of receiving the waste while keeping ownership of the finished product for later sale to the chemical industry.
Operators of waste handling facilities are frequently offered the option to purchase the recycling technology solution by businesses with a dispersed, smaller facility. The facility in question will be developed remotely and delivered to be installed into already-existing garbage and material handling facilities. The waste handler will maintain ownership of the output product for subsequent sales to the chemical industry, while the technology supplier will profit from equipment sales and maintenance contracts.
Firms Involved in The Chemical Recycling Sector
Aduro Clean Technologies, Agilyx, Alterra, Amsty, Arcus, Axens, Basf Chemcycling, BiologiQ, BlueAlp, Borealis, BP, Braskem, Carbios, Clariter, Chevron Phillips, Covestro, Cyclyx, DSM, Dupont Teijin Films, Eastman, Emerson, Emmi, Enval, Evonik, Exergy Solutions, ExxonMobil, Forell Pomini, Greenback, GreenMantra, GR3N, Greiner Packaging, Honeywell, Ineos Styrosolution, Interseroh, Ioniqa (NL), Licella, Lummus, Lyondellbasell, Milliken, Mitsubishi Chemical, Neste, New Hope Energy, Nexus, Nova Chemicals, Obbotec, Omv, Orlen Unipetrol, Phigenesis, Plastic Energy, PureCycle Technologies, Pyrocell, Quantafuel, Recenso, Renewcell, Renew ELP, Sabic, Scholle IPN, Sekisui Chemical, Shell, SK Global Chemical, Soprema, Sudpack, Sumitomo Chemical, Swedish Plastic Recycling, Switch Energy, Technip Energies, Total Energies Corbion, Versalis, and Vita Group amongst other.
Contemporary Developments and Collaboration
A Big Market for Chemical Recycling
The need for recycled plastics is expanding along with the consumption of new polymers. Companies that manufacture consumer goods, such as Coca-Cola, PepsiCo, and Unilever, have made bold commitments to use a significant amount of recycled material in their packaging. Governments are also pushing for prohibitions on single-use plastics like straws, cotton swabs, plastic bags, and cutlery and are requiring a higher percentage of recycled materials to be used. Recycled plastics are sought after by the petrochemical industry to satisfy this quickly expanding market demand.
Mechanical recycling is unable to meet the market's demand for a significant quantity of recycled plastics, as was previously stated. Hence, chemical recycling has enormous promise. Although the industry is still in its early stages, it is currently expanding substantially, with six commercial plants now in operation and many more anticipated to be put into service over the coming few years.
Throughout the market forecast period, it is anticipated that the chemical recycling market size will expand as more and more people switch from conventional, non-renewable energy sources to clean, sustainable ones that do not contribute to global warming.
The metaverse is simply a 3D virtual environment where users may communicate with one another using their avatars...Read More
In the past, companies focused primarily on selling products to their customers. However, a new business model ha...Read More
The oil and grease-resistant (OGR) paper market is a specialized segment of the paper industry that offers unique...Read More
Market research companies collect, analyze, and interpret data about specific markets or industries. ...Read More
The steel fabrication market has the potential to grow at a CAGR of 6.2 % over the projected period of 2022-2030,...Read More
To meet the goal of sustainable growth, all of the aforementioned elements will cause a boom in the ethanol-to-je...Read More