Pharmaceutical Freeze Drying Market

Category : Healthcare & Life Sciences Reports | Delivery Format : PDF,PPT | Publisher: Reports and Insights | Pages : 291

Summarized Info Details
Base Year: 2020 Forecast Period: 2021-2028
Key Geographies:
  • North America, Latin America, Europe, Asia Pacific, Middle East, and Africa
Market Segmentation:
  • The global pharmaceutical freeze drying market is segmented on the basis of free dryer types, drug type, application, system type, type of lyophilization equipment, and region
Key Players:

The key participating players of the global pharmaceutical freeze drying market include ABB, GEA Group, Azbil Corporation, Industria Macchine Automatiche S.p.A., SP Industries, Inc., HOF Enterprise Group, Labconco Corporation, Millrock Technology, Inc., OPTIMA Packaging Group GmbH, Scala Scientific B.V., Zirbus Technology GmbH, Biopharma Process Systems Ltd., MechaTech Systems Ltd., Cuddon Freeze Dry, Freezedry Specialties, Inc., Freeze Drying Systems Pvt. Ltd.

Key Dynamics:
  • Rapid advent and launch of new biologic drugs and injectable formulations along with surge in the demand for purpose-built food industry which primarily propels the demand of pharmaceutical freeze drying approach across the global markets
Market Size: USD XXXX Mn CAGR (2021 -2028): XX%

To learn more about this report, request a free sample copy

Pharmaceutical Freeze Drying Market Overview

The report is titled ‘Pharmaceutical Freeze Drying Market: Opportunity Analysis and Future Assessment 2020-2028’. An overview of conceptual frameworks, analytical approaches of the pharmaceutical freeze drying market is the main objective of the report, which further consists of the market opportunity and insights of the data involved in the making of the respective market. The pharmaceutical freeze drying market is expected to grow at a significant rate in the near future.

The global pharmaceutical freeze drying market is estimated to reach at a value of US$ xx Mn by the end of 2020 and expected to reach at a value of US$ xx Mn by 2028 with a significant CAGR of xx%

Pharmaceutical Freeze Drying Introduction

Freeze drying can be understood as an approach employed by pharmaceutical manufacturers to infer dry products from hydrous solutions. Initially discovered in around the 1940s, the approach extracts a dry product which can be facilely restored to its initial form by adding water when needed. In the pharmaceutical sector, freeze-drying, also known as lyophilization, as it is precisely pertained to, is utilized on cells and tissues, vaccines, hormones, and other products. The technique enables these products to be conserved and maintained before they are used or tested.

Pharmaceutical Freeze Drying Market Dynamics

One of the major factors that is majorly boosting the growth of the global pharmaceutical freeze drying market is the rapid advent and launch of new biologic drugs and injectable formulations along with surge in the demand for purpose-built food industry which primarily propels the demand of pharmaceutical freeze drying approach across the global markets. Other than that, the broadening biotechnology industry in the past few years as well as the rising focus of pharmaceutical manufacturers on untapped and emerging markets is further estimated to contribute to the pharmaceutical freeze drying market growth in the following years.

By the same token, manufacturing of vaccines and biosimilar in emerging regions and displacement of different biopharmaceuticals manufacturing industries from established to emerging regions is expected to boost the market growth in a couple of particular regions including Latin America and Asia Pacific.

Furthermore, several leading players of the market are focusing towards labelling their market presence by obtaining small scale equipment manufacturers exhibiting in emerging countries to accomplish a competitive edge. Such factors are further expected to offer major breakthroughs to the market growth in the coming years.

Pharmaceutical Freeze Drying Market Segmentation

The global pharmaceutical freeze drying market is segmented on the basis of free dryer types, drug type, application, system type, type of lyophilization equipment, and region.

 

By Free Dryer Types

Moving Tray

Non-Moving Tray

 

By Drug Type

Vaccines and antibodies

Penicillin

Blood plasma

Proteins

Enzymes

Hormones

Viruses and bacteria

 

By Application

Injectable Dosage

Diagnostics

Solid Oral Dosage

Others

 

By System Type

Open Loop

Closed Loop

 

By Type of Lyophilization Equipment

Loading & Unloading Systems

Controlling & Monitoring Systems

Vacuum Systems

Clean-In-Place (CIP) Systems

Drying Chambers

Freeze Drying Trays & Shelves

Manifolds

Other accessories

 

By Region

North America

Latin America

Europe

Asia Pacific

Middle East

Africa

 

Pharmaceutical Freeze Drying Market Key Players

The key participating players of the global Pharmaceutical Freeze Drying market include ABB, GEA Group, Azbil Corporation, Industria Macchine Automatiche S.p.A., SP Industries, Inc., HOF Enterprise Group, Labconco Corporation, Martin Christ Gefriertrocknungsanlagen GmbH, Millrock Technology, Inc., OPTIMA Packaging Group GmbH, BÜCHI Labortechnik AG, Scala Scientific B.V., Zirbus Technology GmbH, Biopharma Process Systems Ltd., MechaTech Systems Ltd., Cuddon Freeze Dry, Freezedry Specialties, Inc., Freeze Drying Systems Pvt. Ltd., Lyophilization Systems Ltd., among others.

Reports & Insights Overview on Pharmaceutical Freeze Drying Market Report

The non-identical approach of Reports & Insights stands with conceptual methods backed up with the data analysis. The novel market understanding approach makes up the standard of the assessment results that give a better opportunity for the customers to put their effort.

A research report on the pharmaceutical freeze drying market by Reports & Insights is an in-depth and extensive study of the market based on the necessary data crunching and statistical analysis. It provides a brief view of the dynamics flowing through the market, which includes the factors that support the market and the factors that are acting as impedance for the growth of the market.

Furthermore, the report includes the various trends and opportunities in the respective market in different regions for a better understanding of readers that helps to analyze the potential of the market.

Factors that are benchmarked while estimating the market

Various factors that are benchmarked while estimating the market growth includes (but not restricted to):

New product designs and launches

Current product compliance

Reimbursement

Concerns for use of Pharmaceutical Freeze Drying

Advantages of Pharmaceutical Freeze Drying

Actions taken by the manufacturer and respective regulatory authorities also impact the market growth of the segment. These factors are understood at regional level and in major countries globally for providing regional insights of the product segment in the report. This helps our clients to make informed decisions.

A mix of top-down and bottom-up approach is followed to arrive and validate our market value estimations. For a product segment where one/two manufacturer(s) dominates the market, it’s product sales, previous growth rates and market expansion plans are considered to generate market share in the global market.


Pharmaceutical Freeze Drying Market

To learn more about this report, request a free sample copy


1.    Global Pharmaceutical Freeze Drying Report Overview

1.1.    Introduction

1.2.    Report Description

1.3.    Methodology

2.    Global Pharmaceutical Freeze Drying Overview

2.1.    Introduction

2.1.1.    Market Definition

2.1.2.    Market Taxonomy

2.2.    Executive Summary

2.3.    Global Pharmaceutical Freeze Drying Snapshot

2.4.    Global Pharmaceutical Freeze Drying Size And Forecast, 2020–2028

2.4.1.    Introduction

2.4.2.    Market Value Forecast And Annual Growth Rate (AGR) Comparison (2020–2028)

2.5.    Global Pharmaceutical Freeze Drying Dynamics

2.5.1.    Drivers

2.5.2.    Restraints

2.5.3.    Opportunity

2.5.4.    Trends

2.6.    Porter’s Five Forces Model

2.7.    SWOT Analysis

2.8.    PEST Analysis

2.9.    Supply Chain Analysis

2.10.    Demand Analysis

2.10.1.    Demand Analysis by Drug Type

2.11.    Pricing Analysis

2.11.1.    Regional Pricing Analysis By Product

2.11.2.    Pricing Break-up

2.11.3.    Manufacturer Level Pricing

2.11.4.    Distributor Level Pricing

2.11.5.    Global Average Pricing Analysis Benchmark

2.11.6.    Pricing Analysis by Competition

2.12.    Cross Section Analysis 

2.12.1.    Cross Analysis of Type of Lyophilization Equipment W.R.T Application

2.13.    Value Chain Analysis

2.14.    Potential Analysis

3.    Covid-19 Impact on Pharmaceutical Freeze Drying

3.1.    Impact Analysis of Covid-19 on the global Pharmaceutical Freeze Drying

3.2.    Effect On Value Chain

3.3.    Business Impact W.R.T Revenue 

3.4.    Volatility In Price 

3.5.    Effect On The Overall Trade 

3.6.    Market Impact Analysis In 2020 (Quarter Wise)

4.    Global Pharmaceutical Freeze Drying, By Free Dryer Types

4.1.    Introduction

4.1.1.    Annual Growth Rate Comparison, By Free Dryer Types

4.1.2.    BPS Analysis, By Free Dryer Types

4.2.    Market Revenue (US$Mn) and Forecast, By Free Dryer Types

4.2.1.    Moving Tray

4.2.2.    Non-Moving Tray

4.3.    Global Pharmaceutical Freeze Drying Attractiveness Index, By Free Dryer Types

5.    Global Pharmaceutical Freeze Drying, By Drug Type

5.1.    Introduction

5.1.1.    Annual Growth Rate Comparison, By Drug Type

5.1.2.    BPS Analysis, By Drug Type

5.2.    Market Revenue (US$Mn) and Forecast, By Drug Type

5.2.1.    Vaccines and antibodies

5.2.2.    Penicillin

5.2.3.    Blood plasma

5.2.4.    Proteins

5.2.5.    Enzymes

5.2.6.    Hormones

5.2.7.    Viruses and bacteria

5.3.    Global Pharmaceutical Freeze Drying Attractiveness Index, By Drug Type

6.    Global Pharmaceutical Freeze Drying, By Application

6.1.    Introduction

6.1.1.    Annual Growth Rate Comparison, By Application

6.1.2.    BPS Analysis, By Application

6.2.    Market Revenue (US$Mn) and Forecast, By Application

6.2.1.    Injectable Dosage

6.2.2.    Diagnostics

6.2.3.    Solid Oral Dosage

6.2.4.    Others

6.3.    Global Pharmaceutical Freeze Drying Attractiveness Index, By Application

7.    Global Pharmaceutical Freeze Drying, By System Type 

7.1.    Introduction

7.1.1.    Annual Growth Rate Comparison, By System Type

7.1.2.    BPS Analysis, By System Type

7.2.    Market Revenue (US$Mn) and Forecast, By System Type

7.2.1.    Open Loop

7.2.2.    Closed Loop

7.3.    Global Pharmaceutical Freeze Drying Attractiveness Index, By System Type

8.    Global Pharmaceutical Freeze Drying, By Type of Lyophilization Equipment

8.1.    Introduction

8.1.1.    Annual Growth Rate Comparison, By Type of Lyophilization Equipment

8.1.2.    BPS Analysis, By Type of Lyophilization Equipment

8.2.    Market Revenue (US$Mn) and Forecast, By Type of Lyophilization Equipment

8.2.1.    Loading & Unloading Systems

8.2.2.    Controlling & Monitoring Systems

8.2.3.    Vacuum Systems

8.2.4.    Clean-In-Place (CIP) Systems

8.2.5.    Drying Chambers

8.2.6.    Freeze Drying Trays & Shelves

8.2.7.    Manifolds

8.2.8.    Other accessories

8.3.    Global Pharmaceutical Freeze Drying Attractiveness Index, By Type of Lyophilization Equipment

9.    Global Pharmaceutical Freeze Drying, By Region 

9.1.    Introduction

9.1.1.    Annual Growth Rate Comparison, By Region

9.1.2.    BPS Analysis, By Region

9.2.    Market Revenue (US$Mn) and Forecast, By Region

9.2.1.    North America

9.2.2.    Latin America

9.2.3.    Europe

9.2.4.    Asia Pacific

9.2.5.    Middle East 

9.2.6.    Africa

9.3.    Global Pharmaceutical Freeze Drying Attractiveness Index, By Region

10.    North America Pharmaceutical Freeze Drying Analysis and Forecast, 2020–2028

10.1.    Introduction

10.1.1.    Annual Growth Rate Comparison, By Country

10.1.2.    BPS Analysis, By Country

10.2.    Market Revenue (US$Mn) and Forecast, By Country

10.2.1.    U.S. Pharmaceutical Freeze Drying

10.2.2.    Canada Pharmaceutical Freeze Drying

10.3.    North America Pharmaceutical Freeze Drying, By Free Dryer Types 

10.3.1.    Moving Tray

10.3.2.    Non-Moving Tray

10.4.    North America Pharmaceutical Freeze Drying, By Drug Type

10.4.1.    Vaccines and antibodies

10.4.2.    Penicillin

10.4.3.    Blood plasma

10.4.4.    Proteins

10.4.5.    Enzymes

10.4.6.    Hormones

10.4.7.    Viruses and bacteria

10.5.    North America Pharmaceutical Freeze Drying, By Application

10.5.1.    Injectable Dosage

10.5.2.    Diagnostics

10.5.3.    Solid Oral Dosage

10.5.4.    Others

10.6.    North America Pharmaceutical Freeze Drying, By System Type

10.6.1.    Open Loop

10.6.2.    Closed Loop

10.7.    North America Pharmaceutical Freeze Drying, By Type of Lyophilization Equipment

10.7.1.    Loading & Unloading Systems

10.7.2.    Controlling & Monitoring Systems

10.7.3.    Vacuum Systems

10.7.4.    Clean-In-Place (CIP) Systems

10.7.5.    Drying Chambers

10.7.6.    Freeze Drying Trays & Shelves

10.7.7.    Manifolds

10.7.8.    Other accessories

10.8.    North America Pharmaceutical Freeze Drying Attractiveness Index

10.8.1.    By Country

10.8.2.    By Free Dryer Types

10.8.3.    By Drug Type

10.8.4.    By Application

10.8.5.    By System Type

10.8.6.    By Type of Lyophilization Equipment

11.    Latin America Pharmaceutical Freeze Drying Analysis and Forecast, 2020–2028

11.1.    Introduction

11.1.1.    Annual Growth Rate Comparison, By Country

11.1.2.    BPS Analysis, By Country

11.2.    Market (US$Mn) Forecast, By Country

11.2.1.    Brazil Pharmaceutical Freeze Drying

11.2.2.    Mexico Pharmaceutical Freeze Drying

11.2.3.    Rest Of Latin America Pharmaceutical Freeze Drying

11.3.    Latin America Pharmaceutical Freeze Drying, By Free Dryer Types 

11.3.1.    Moving Tray

11.3.2.    Non-Moving Tray

11.4.    Latin America Pharmaceutical Freeze Drying, By Drug Type

11.4.1.    Vaccines and antibodies

11.4.2.    Penicillin

11.4.3.    Blood plasma

11.4.4.    Proteins

11.4.5.    Enzymes

11.4.6.    Hormones

11.4.7.    Viruses and bacteria

11.5.    Latin America Pharmaceutical Freeze Drying, By Application

11.5.1.    Injectable Dosage

11.5.2.    Diagnostics

11.5.3.    Solid Oral Dosage

11.5.4.    Others

11.6.    Latin America Pharmaceutical Freeze Drying, By System Type

11.6.1.    Open Loop

11.6.2.    Closed Loop

11.7.    Latin America Pharmaceutical Freeze Drying, By Type of Lyophilization Equipment

11.7.1.    Loading & Unloading Systems

11.7.2.    Controlling & Monitoring Systems

11.7.3.    Vacuum Systems

11.7.4.    Clean-In-Place (CIP) Systems

11.7.5.    Drying Chambers

11.7.6.    Freeze Drying Trays & Shelves

11.7.7.    Manifolds

11.7.8.    Other accessories

11.8.    Latin America Pharmaceutical Freeze Drying Attractiveness Index

11.8.1.    By Country

11.8.2.    By Free Dryer Types

11.8.3.    By Drug Type

11.8.4.    By Application

11.8.5.    By System Type

11.8.6.    By Type of Lyophilization Equipment

12.    Europe Pharmaceutical Freeze Drying Analysis and Forecast, 2020–2028

12.1.    Introduction

12.1.1.    Annual Growth Rate Comparison, By Country

12.1.2.    BPS Analysis, By Country

12.2.    Market (US$Mn) Forecast, By Country

12.2.1.    U.K. Pharmaceutical Freeze Drying

12.2.2.    Germany Pharmaceutical Freeze Drying

12.2.3.    Italy Pharmaceutical Freeze Drying

12.2.4.    France Pharmaceutical Freeze Drying

12.2.5.    Spain Pharmaceutical Freeze Drying

12.2.6.    Russia Pharmaceutical Freeze Drying

12.2.7.    Poland Pharmaceutical Freeze Drying

12.2.8.    NORDIC Pharmaceutical Freeze Drying

12.2.9.    BENELUX Pharmaceutical Freeze Drying

12.2.10.    Rest Of Europe Pharmaceutical Freeze Drying

12.3.    Europe Pharmaceutical Freeze Drying, By Free Dryer Types 

12.3.1.    Moving Tray

12.3.2.    Non-Moving Tray

12.4.    Europe Pharmaceutical Freeze Drying, By Drug Type

12.4.1.    Vaccines and antibodies

12.4.2.    Penicillin

12.4.3.    Blood plasma

12.4.4.    Proteins

12.4.5.    Enzymes

12.4.6.    Hormones

12.4.7.    Viruses and bacteria

12.5.    Europe Pharmaceutical Freeze Drying, By Application

12.5.1.    Injectable Dosage

12.5.2.    Diagnostics

12.5.3.    Solid Oral Dosage

12.5.4.    Others

12.6.    Europe Pharmaceutical Freeze Drying, By System Type

12.6.1.    Open Loop

12.6.2.    Closed Loop

12.7.    Europe Pharmaceutical Freeze Drying, By Type of Lyophilization Equipment

12.7.1.    Loading & Unloading Systems

12.7.2.    Controlling & Monitoring Systems

12.7.3.    Vacuum Systems

12.7.4.    Clean-In-Place (CIP) Systems

12.7.5.    Drying Chambers

12.7.6.    Freeze Drying Trays & Shelves

12.7.7.    Manifolds

12.7.8.    Other accessories

12.8.    Europe Pharmaceutical Freeze Drying Attractiveness Index

12.8.1.    By Country

12.8.2.    By Free Dryer Types

12.8.3.    By Drug Type

12.8.4.    By Application

12.8.5.    By System Type

12.8.6.    By Type of Lyophilization Equipment

13.    Asia Pacific Pharmaceutical Freeze Drying Analysis and Forecast, 2020–2028

13.1.    Introduction

13.1.1.    Annual Growth Rate Comparison, By Country

13.1.2.    BPS Analysis, By Country

13.2.    Market (US$Mn) Forecast, By Country

13.2.1.    China Pharmaceutical Freeze Drying

13.2.2.    India Pharmaceutical Freeze Drying

13.2.3.    Japan Pharmaceutical Freeze Drying

13.2.4.    Australia and New Zealand Pharmaceutical Freeze Drying

13.2.5.    South Korea Pharmaceutical Freeze Drying

13.2.6.    Rest of Asia Pacific Pharmaceutical Freeze Drying

13.3.    Asia Pacific Pharmaceutical Freeze Drying, By Free Dryer Types 

13.3.1.    Moving Tray

13.3.2.    Non-Moving Tray

13.4.    Asia Pacific Pharmaceutical Freeze Drying, By Drug Type

13.4.1.    Vaccines and antibodies

13.4.2.    Penicillin

13.4.3.    Blood plasma

13.4.4.    Proteins

13.4.5.    Enzymes

13.4.6.    Hormones

13.4.7.    Viruses and bacteria

13.5.    Asia Pacific Pharmaceutical Freeze Drying, By Application

13.5.1.    Injectable Dosage

13.5.2.    Diagnostics

13.5.3.    Solid Oral Dosage

13.5.4.    Others

13.6.    Asia Pacific Pharmaceutical Freeze Drying, By System Type

13.6.1.    Open Loop

13.6.2.    Closed Loop

13.7.    Asia Pacific Pharmaceutical Freeze Drying, By Type of Lyophilization Equipment

13.7.1.    Loading & Unloading Systems

13.7.2.    Controlling & Monitoring Systems

13.7.3.    Vacuum Systems

13.7.4.    Clean-In-Place (CIP) Systems

13.7.5.    Drying Chambers

13.7.6.    Freeze Drying Trays & Shelves

13.7.7.    Manifolds

13.7.8.    Other accessories

13.8.    Asia Pacific Pharmaceutical Freeze Drying Attractiveness Index

13.8.1.    By Country

13.8.2.    By Free Dryer Types

13.8.3.    By Drug Type

13.8.4.    By Application

13.8.5.    By System Type

13.8.6.    By Type of Lyophilization Equipment

14.    Middle East Pharmaceutical Freeze Drying Analysis and Forecast, 2020–2028

14.1.    Introduction

14.1.1.    Annual Growth Rate Comparison, By Country

14.1.2.    BPS Analysis, By Country

14.2.    Market (US$Mn) Forecast, By Country

14.2.1.    GCC Countries Pharmaceutical Freeze Drying

14.2.2.    Israel Pharmaceutical Freeze Drying

14.2.3.    Rest Of Middle East Pharmaceutical Freeze Drying

14.3.    Middle East Pharmaceutical Freeze Drying, By Free Dryer Types 

14.3.1.    Moving Tray

14.3.2.    Non-Moving Tray

14.4.    Middle East Pharmaceutical Freeze Drying, By Drug Type

14.4.1.    Vaccines and antibodies

14.4.2.    Penicillin

14.4.3.    Blood plasma

14.4.4.    Proteins

14.4.5.    Enzymes

14.4.6.    Hormones

14.4.7.    Viruses and bacteria

14.5.    Middle East Pharmaceutical Freeze Drying, By Application

14.5.1.    Injectable Dosage

14.5.2.    Diagnostics

14.5.3.    Solid Oral Dosage

14.5.4.    Others

14.6.    Middle East Pharmaceutical Freeze Drying, By System Type

14.6.1.    Open Loop

14.6.2.    Closed Loop

14.7.    Middle East Pharmaceutical Freeze Drying, By Type of Lyophilization Equipment

14.7.1.    Loading & Unloading Systems

14.7.2.    Controlling & Monitoring Systems

14.7.3.    Vacuum Systems

14.7.4.    Clean-In-Place (CIP) Systems

14.7.5.    Drying Chambers

14.7.6.    Freeze Drying Trays & Shelves

14.7.7.    Manifolds

14.7.8.    Other accessories

14.8.    Middle East Pharmaceutical Freeze Drying Attractiveness Index

14.8.1.    By Country

14.8.2.    By Free Dryer Types

14.8.3.    By Drug Type

14.8.4.    By Application

14.8.5.    By System Type

14.8.6.    By Type of Lyophilization Equipment

15.    Africa Pharmaceutical Freeze Drying Analysis and Forecast, 2020–2028

15.1.    Introduction

15.1.1.    Annual Growth Rate Comparison, By Country

15.1.2.    BPS Analysis, By Country

15.2.    Market (US$Mn) Forecast, By Country

15.2.1.    South Africa Countries Pharmaceutical Freeze Drying

15.2.2.    Egypt Pharmaceutical Freeze Drying

15.2.3.    North Africa Pharmaceutical Freeze Drying

15.2.4.    Rest of Africa Pharmaceutical Freeze Drying

15.3.    Africa Pharmaceutical Freeze Drying, By Free Dryer Types 

15.3.1.    Moving Tray

15.3.2.    Non-Moving Tray

15.4.    Africa Pharmaceutical Freeze Drying, By Drug Type

15.4.1.    Vaccines and antibodies

15.4.2.    Penicillin

15.4.3.    Blood plasma

15.4.4.    Proteins

15.4.5.    Enzymes

15.4.6.    Hormones

15.4.7.    Viruses and bacteria

15.5.    Africa Pharmaceutical Freeze Drying, By Application

15.5.1.    Injectable Dosage

15.5.2.    Diagnostics

15.5.3.    Solid Oral Dosage

15.5.4.    Others

15.6.    Africa Pharmaceutical Freeze Drying, By System Type

15.6.1.    Open Loop

15.6.2.    Closed Loop

15.7.    Africa Pharmaceutical Freeze Drying, By Type of Lyophilization Equipment

15.7.1.    Loading & Unloading Systems

15.7.2.    Controlling & Monitoring Systems

15.7.3.    Vacuum Systems

15.7.4.    Clean-In-Place (CIP) Systems

15.7.5.    Drying Chambers

15.7.6.    Freeze Drying Trays & Shelves

15.7.7.    Manifolds

15.7.8.    Other accessories

15.8.    Africa Pharmaceutical Freeze Drying Attractiveness Index

15.8.1.    By Country

15.8.2.    By Free Dryer Types

15.8.3.    By Drug Type

15.8.4.    By Application

15.8.5.    By System Type

15.8.6.    By Type of Lyophilization Equipment

16.    Competitive Landscape

16.1.    Competition Dashboard

16.2.    Company Share Analysis

16.2.1.    Market Analysis by Tier of Companies

16.2.2.    Market Share Analysis of Top Players

16.3.    Market Presence Analysis

16.3.1.    Regional Footprint of Players

16.3.2.    Product Footprint by Players

16.3.3.    Channel Footprint by Players

16.4.    Company Profiles

16.4.1.    ABB

16.4.1.1.    Company overview

16.4.1.2.    Financial overview

16.4.1.3.    Key developments

16.4.1.4.    Swot analysis

16.4.1.5.    Strategies

16.4.1.6.    Product analysis

16.4.2.    GEA Group

16.4.3.    Azbil Corporation

16.4.4.    Industria Macchine Automatiche S.p.A.

16.4.5.    SP Industries, Inc.

16.4.6.    HOF Enterprise Group

16.4.7.    Labconco Corporation

16.4.8.    Martin Christ Gefriertrocknungsanlagen GmbH

16.4.9.    Millrock Technology, Inc.

16.4.10.    OPTIMA Packaging Group GmbH

16.4.11.    BÜCHI Labortechnik AG

16.4.12.    Scala Scientific B.V.

16.4.13.    Zirbus Technology GmbH

16.4.14.    Biopharma Process Systems Ltd.

16.4.15.    MechaTech Systems Ltd.

16.4.16.    Cuddon Freeze Dry

16.4.17.    Freezedry Specialties, Inc.

16.4.18.    Freeze Drying Systems Pvt. Ltd.

16.4.19.    Lyophilization Systems Ltd.

17.    Acronyms

Select License Type

Frequently Asked Questions

Freeze drying can be understood as an approach employed by pharmaceutical manufacturers to infer dry products from hydrous solutions. Initially discovered in around the 1940s, the approach extracts a dry product which can be facilely restored to its initial form by adding water when needed. In the pharmaceutical sector, freeze-drying, also known as lyophilization, as it is precisely pertained to, is utilized on cells and tissues, vaccines, hormones, and other products. The technique enables these products to be conserved and maintained before they are used or tested.

Rapid advent and launch of new biologic drugs and injectable formulations along with surge in the demand for purpose-built food industry which primarily propels the demand of pharmaceutical freeze drying approach across the global markets

The global pharmaceutical freeze drying market is segmented on the basis of free dryer types, drug type, application, system type, type of lyophilization equipment, and region

The key participating players of the global Pharmaceutical Freeze Drying market include ABB, GEA Group, Azbil Corporation, Industria Macchine Automatiche S.p.A., SP Industries, Inc., HOF Enterprise Group, Labconco Corporation, Martin Christ Gefriertrocknungsanlagen GmbH, Millrock Technology, Inc., OPTIMA Packaging Group GmbH, BÜCHI Labortechnik AG, Scala Scientific B.V., Zirbus Technology GmbH, Biopharma Process Systems Ltd., MechaTech Systems Ltd., Cuddon Freeze Dry, Freezedry Specialties, Inc., Freeze Drying Systems Pvt. Ltd., Lyophilization Systems Ltd., among others.



This site uses cookies, including third-party cookies, that help us to provide and improve our services. Privacy Policy

OK